Bubble-free on-chip continuous-flow polymerase chain reaction: concept and application.
نویسندگان
چکیده
Bubble formation inside a microscale channel is a significant problem in general microfluidic experiments. The problem becomes especially crucial when performing a polymerase chain reaction (PCR) on a chip which is subject to repetitive temperature changes. In this paper, we propose a bubble-free sample injection scheme applicable for continuous-flow PCR inside a glass/PDMS hybrid microfluidic chip, and attempt to provide a theoretical basis concerning bubble formation and elimination. Highly viscous paraffin oil plugs are employed in both the anterior and posterior ends of a sample plug, completely encapsulating the sample and eliminating possible nucleation sites for bubbles. In this way, internal channel pressure is increased, and vaporization of the sample is prevented, suppressing bubble formation. Use of an oil plug in the posterior end of the sample plug aids in maintaining a stable flow of a sample at a constant rate inside a heated microchannel throughout the entire reaction, as compared to using an air plug. By adopting the proposed sample injection scheme, we demonstrate various practical applications. On-chip continuous-flow PCR is performed employing genomic DNA extracted from a clinical single hair root sample, and its D1S80 locus is successfully amplified. Also, chip reusability is assessed using a plasmid vector. A single chip is used up to 10 times repeatedly without being destroyed, maintaining almost equal intensities of the resulting amplicons after each run, ensuring the reliability and reproducibility of the proposed sample injection scheme. In addition, the use of a commercially-available and highly cost-effective hot plate as a potential candidate for the heating source is investigated.
منابع مشابه
Amplification of SPPS150 and Salmonella typhi DNA with a high throughput oscillating flow polymerase chain reaction device.
In this paper, a novel oscillating flow polymerase chain reaction (PCR) device was designed and fabricated to amplify SPPS150 and salmonella typhi. In this new design, the samples are shuttled (oscillating flow) inside a microfluidic chip to three different temperature zones required for DNA amplification. The amplification cycle time has markedly been reduced as the reagent volume used was onl...
متن کاملRapid detection for primary screening of influenza A virus: microfluidic RT-PCR chip and electrochemical DNA sensor.
Rapid and definitive diagnosis is critical to the prevention of the spread of endemic human pathogenic viruses. Detection of variant specific genes by reverse transcription polymerase chain reaction (RT-PCR) has become a routine diagnostic test for accurate subtyping of RNA viruses, such as influenza. In this paper, we demonstrate the use of a continuous-flow polydimethylsiloxane (PDMS) microfl...
متن کاملSelf-actuated, thermo-responsive hydrogel valves for lab on a chip.
An easy to fabricate, thermally-actuated, self-regulated hydrogel valve for flow control in pneumatically driven, microfluidic systems is described. This microvalve takes advantage of the properties of the hydrogel, poly(N-isopropylacrylamide), as well as the aqueous fluid itself to realize flow control. The valve was designed for use in a diagnostic system fabricated with polycarbonate and aim...
متن کاملNumerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملA disposable microfluidic cassette for DNA amplification and detection.
A pneumatically driven, disposable, microfluidic cassette comprised of a polymerase chain reaction (PCR) thermal cycler, an incubation chamber to label PCR amplicons with up-converting phosphor (UPT) reporter particles, conduits, temperature-activated, normally closed hydrogel valves, and a lateral flow strip, was constructed and tested. The hydrogel valves, which were opened and closed with th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 136 11 شماره
صفحات -
تاریخ انتشار 2011